Erratum and Addendum: New Approach to Einstein-Petrov Type I Spaces. II. Classification Scheme¹

S. B. Edgar²

There is an error in the proof of Theorem $3(c)$; equation (35) does not follow from equation (32) as stated. However the result in Theorem $3(c)$ does hold, but for a smaller subclass of Class C spaces than claimed. A more appropriate subdivision of these spaces, with corrected statement and proof of Theorem 3, is given below.

The natural subdivision of Class C spaces is:

- (a) $A_{\mu} + kB_{\mu} 2C_{\mu} = 0$, where k is a constant.
- (b) $pA_{\mu} + qB_{\mu} + rC_{\mu} = 0$, where $\left(\frac{p}{r}\right)$ and $\left(\frac{q}{r}\right)$ are analytic functions of Ψ_0 and Ψ_2 .
- (c) $pA_{\mu} + qB_{\mu} + rC_{\mu} = 0$, where (p/r) and (q/r) are analytic functions of Ψ_0 , Ψ_2 , and Φ ; Φ is a function of $\bar{\Psi}_0$ and $\bar{\Psi}_2$.
- (d) Other than (a) , (b) , and (c) .

These subclasses have the following properties:

Theorem 3.

(a) For Class C(a) spaces A_{μ} , B_{μ} , and C_{μ} are gradient vectors, i.e.,

$$
A_{\mu} = A_{,\mu}, \qquad B_{\mu} = B_{,\mu}, \qquad C_{\mu} = C_{,\mu}
$$

(b) For Class C(b) spaces A_{μ} , B_{μ} , and C_{μ} are hypersurface orthogonal vectors, i.e.,

$$
A_{\mu} = aA_{,\mu}, \qquad B_{\mu} = bB_{,\mu}, \qquad C_{\mu} = cC_{,\mu}
$$

¹This paper appeared in *International Journal of Theoretical Physics*, **25**, 425 (1986).

²Mathematics Department, University of Botswana, Gaborone, Botswana.

107

108 Edgar

(c) For Class C(c) spaces A_μ , B_μ , and C_μ have the form

$$
A_{\mu} = aA_{,\mu} + \alpha_{,\mu}
$$

$$
B_{\mu} = bB_{,\mu} + \beta_{,\mu}
$$

$$
C_{\mu} = cC_{,\mu} + \gamma_{,\mu}
$$

Proof of (c). Substitution of 3

$$
pA_{\mu} + qB_{\mu} + rC_{\mu} = 0 \tag{23}
$$

into (6) gives

$$
3\Psi_2\{rA_{\mu;\nu}\} + \Psi_0\{rB_{\mu;\nu}\} + 2(2p+r)A_{\mu}B_{\nu}\} = 0
$$
\n
$$
3\Psi_2\{rB_{\mu;\nu}\} - 2(2p+r)A_{\mu}B_{\nu}\}
$$
\n(24)

+
$$
\Psi_0\{(r-4p)A_{[\mu;\nu]} - 4qB_{[\mu;\nu]} - 4r(p/r)_{,[\nu}A_{\mu]}
$$

- $4r(q/r)_{,[\nu}B_{\mu]}\}=0$ (25)

Since (p/r) and (q/r) are functions of Ψ_0 , Ψ_2 , and $\Phi(\bar{\Psi}_0, \bar{\Psi}_2)$, equation (25) has the form, after using equations (5),

$$
3\Psi_{2}\{rB_{\mu;\nu} - 2(2p+r)A_{\mu}B_{\nu}\}\n+ \Psi_{0}\{(r-4p)A_{\mu;\nu} - 4qB_{\mu;\nu}\} + rfA_{\mu}B_{\nu}\n+ rgA_{\mu}\Phi_{\nu} + rhB_{\mu}\Phi_{\nu}\}=0
$$
\n(25')

where f, g, and h are functions of Ψ_0 , Ψ_2 , and $\Phi(\bar{\Psi}_0, \bar{\Psi}_2)$.

With the choice of $G_{\mu\nu}$ as

$$
G_{\mu\nu} = rfA_{\mu}B_{\nu\,} + rgA_{\mu}\Phi_{,\nu\,} + rhB_{\mu}\Phi_{,\nu\,} \tag{26}
$$

and noting

 λ

$$
G_{\mu\nu}A_{\lambda}B_{\rho\,} = 0 \tag{27}
$$

$$
G_{\mu\nu}G_{\rho\lambda} = 0 \tag{28}
$$

the rest of the proof, from equation (29) to the end, is now valid, for the redefined class C(c) spaces.

Finally, it is noted that there is no obvious simplification in the form of the vectors for the subclass $C(d)$ spaces.

³Equation numbers refer to original paper.